We use molecular features and metric

learning to predict gene expression

Cheminformatics deciphers stress response and virulence pathways in infection

Roberto Olayo Alarcon¹, Christoph Binsfeld², Ana Rita Brochado², Christian L. Müller¹ ¹Ludwig-Maximilians-Universität München, Germany; ²Department of Microbiology, University of Würzburg, Biocenter, Germany

Small compounds and their effect on microbes

Much is unknown about which chemical signals trigger different stress responses in bacterial pathogens. Reporter assay experiments are time-consuming and expensive. Compounds must be prioritized for further study.

Reporter assay experiments Transcriptional regulators Regulatory sRNAs **Structural fingerprints**

Compound induced expression clustering

Metric Learning

Information Theoretic Metric Learning: $\min KL(p(\boldsymbol{x};A_0)||p(\boldsymbol{x};A))$

- $d_A(\mathbf{x}_i, \mathbf{x}_j) \leq u$ $(i,j) \in S$ *s*.*t*. $d_A(\boldsymbol{x}_i, \boldsymbol{x}_j) \geq l$ $(i,j) \in D$

Inverse distance weighting

Structural fingerprints and metric learning

Structural fingerprints alone are partially predictive of the expression pattern they induce. We use metric learning to learn a molecular representation that is more predictive of gene expression.

Literature:

- 1. Davis, J., Kulis, B., Jain, P., Sra, S., & Dhillon, I. (2007). Information-theoretic metric learning. Proceedings Of The 24Th International Conference On Machine Learning ICML '07. doi: 10.1145/1273496.1273523
- 2. Mediati, D., Wu, S., Wu, W., & Tree, J. (2021). Networks of Resistance: Small RNA Control of Antibiotic Resistance. Trends In Genetics, 37(1), 35-45. doi: 10.1016/j.tig.2020.08.016
- 3. Stokes, J., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., & Donghia, N. et al. (2020). A Deep Learning Approach to Antibiotic Discovery. Cell, 180(4), 688-702.e13. doi: 10.1016/j.cell.2020.01.021

Neue Strategien gegen multiresistente Krankheitserreger mittels digitaler Vernetzung